
Deep Learning as a Tool to Predict Flow Patterns 
in Two-Phase Flow  

 
 

M. Ezzatabadipour  
P.Singh 

M. Robinson 
C. Torres  
P. Guillén 

pgrondon@uh.edu 
Center for Advanced Computing and Data Systems 

University of Houston 
 
 



INTRODUCTION 

In order to better model complex real-word data such as multiphase flow, one 
approach is to develop: 
 

•  Pattern recognition techniques 
•  Robust features 
•  Deep learning methods - MLP 
•  Predict flow patterns 
•  From fluid properties and pipe conditions 



INTRODUCTION 

 
•  Human information processing mechanism (e.g. vision and speech) suggests 
the need of deep architectures for extracting complex structure and building 
internal representation from rich sensory inputs 

•  It is natural to believe that the state of the art can be advanced in processing 
these types of media signals if efficient and effective deep learning algorithms 
are developed 

•   Deep architectures are composed of many layers of nonlinear processing 
stages, where each lower layer’s outputs are fed to its immediate higher layer as 
the input 

•  The concept of deep learning originated from artificial neural network research. 
Multilayer perceptron with many hidden layers is a good example of the models 
with deep architectures 

•   Deep learning allows computational models that are composed of multiple 
processing layers to learn representations of data with multiple levels of 
abstraction  



INTRODUCTION 

 
•  The term flow pattern refers to the spatial distribution of the phases, which 
occur during gas-liquid two-phase flow in pipes 

•  When gases and liquids flow simultaneously in a pipe, the two phases can 
distribute themselves in a variety of flow configurations  

•  The flow configurations differ from each other in the interface distribution, 
resulting in different flow characteristics 

•  Determination of flow patterns is a fundamental problem in two-phase flow 
analysis. Thus, knowledge of the existing flow pattern can help the industry 
carry out a better design of two-phase flow systems  

•  There is not agreement in the number of flow patterns in two-phase flow due to 
overlapping and characterization subjectivity, especially at the transition zones 

•   [Shoham 2006] attempted to summarize the main flow patterns for all 
inclination angles as Dispersed bubble, Bubble, Slug, Churn, Annular and 
Stratified (smooth and wavy). The flow patterns depend on parameters such as 
pipe inclination and diameter, physical properties of the phases, and their 
superficial velocities 
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MATERIALS and METHODS 
 

Deep Learning: Multilayer Perceptron (MLP) 

•  There are several theoretical frameworks for deep learning, and here we 
summarize the feedforward architecture used by H20. 

•  Multilayer perceptron (MLP) are feed-forward neural networks with architecture 
composed of the input layer, the hidden layer and the output layer.  

•  Each layer is formed from small units known as neurons. Neurons in the input 
layer receive the input signals X and distribute them forward to the rest of the 
network. In the next layers, each neuron receives a signal, which is a weighted 
sum of the outputs of the nodes in the previous layer. Inside each neuron, an 
activation function is used to control the input. 
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•  Such a network determines a non-linear mapping from an input vector to the 
output vector, parameterized by a set of network weights, which are referred to 
as the vector of weights W.  

•  The first step in approximating the weight parameters of the model is finding 
the appropriate architecture of the MLP, where the architecture is characterized 
by the number of hidden units, the type of activation function, as well as the 
number of input and output variables.  

•  The second step estimates the weight parameters using the training set. 
Training estimates the weight vector W to ensure that the output is as close to 
the target vector as possible.  
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MATERIALS and METHODS 
 

Deep Learning: Multilayer Perceptron (MLP) 
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•  The purpose of this training is to learn the multilayer architectures by simple 

stochastic gradient descent. The backpropagation procedure to compute the 
gradient of an objective function with respect to the weights of a multilayer 
stack of modules is nothing more than a practical application of the chain rule 
for derivatives.  

•  The key insight is that the gradient of the objective with respect to the input of a 
module can be computed by working backward from the gradient with respect 
to the output of that module. The backpropagation equation can be applied 
repeatedly to propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to the bottom 
(where the external input is fed)  

•  Multilayer feedwoard neural networks consist of many layers of interconnected 
neuron units, starting with an input layer to match the feature space, followed 
by multiple layers of nonlinearity, and ending with a linear regression or 
classification layer to match the output space.  

MATERIALS and METHODS 
 

Deep Learning: Multilayer Perceptron (MLP) 
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•  The weights linking neurons and biases with other neurons fully determine the 
output of the entire network, and finally learning occurs when these weights are 
adapted to minimize the error on labeled training data.  

•  To go from one layer to the next, the weighted sum of their inputs from the 
previous layer pass the result through a non-linear function.  

•  At the present, the most popular non-linear function is the rectified linear unit 
(ReLU).  

MATERIALS and METHODS 
 

Deep Learning: Multilayer Perceptron (MLP) 



MATERIALS and METHODS 

Database 
 
•  A flow pattern experimental data base was collected, which consists of the 

most relevant studies developed in the area.  

•  Specifically for this study, the data set from [Shoham 1982] was selected among 
the available sets due to its large number of data points (5676), range in 
inclination angle (−90◦ to 90◦), two pipe diameters (ID=1in and 2in), and the wide 
range of flow patterns observed for all pipe inclination angles.  

•  The flow patterns considered in this study are: Annular (A), Bubble (B), 
Dispersed bubble (DB), Intermittent (I), Stratified smooth (SS) and Stratified 
wavy (SW). The Intermittent flow pattern considers Slug (SL) and Churn (CH) 
flow pattern combined.  

•  In order to analyze the performance of the algorithm, three tests are proposed: 
Test 1 considers all the flow patterns proposed; Test 2 combines the SS and SW 
data points into stratified flow ST (ST = SS + SW); finally Test 3 combines the 
segregated flow patterns (ST + A) and the dispersed flow patterns (DB + B).  



RESULTS 

 
•   Table 1 shows the size of the architecture multilayer perceptron and 
parameters used on the experiments to evaluate the classification 

  Variables    Parameters 
 

 Number of input neurons            9 
 Number of hidden layers                           3 
 Hidden layer topology       (25,25,25) 
 Number of output neurons (classes)           6  
 Activation function                       ReLU  
 Loss function                           Mean Squared Error  
 Number of training epochs       1000000  
 l1 penalty weighting                                      0.00001 
 l2 penalty weighting                                      0.00001  
 n-fold cross-validation                                         10  

 

In our approach, we train a MLP on a set of randomly selected features, 
approximately 60 %, extracted from the entire dataset, then approximately 20 % 
are used as the validation set, and approximately 20 % are used as the testing 
set for the 3 different tests 



RESULTS 

 
Table 2 shows the confusion matrix for the training data set for Test 1, predicting 
classes A, B, DB, I, SS, and SW. We can readily see the strong diagonal components. 
This means that our classifier is achieving little classification error. The confusion 
matrix’s columns represent the output patterns predicted by Deep Learning while the 
rows represent the true class which is denoted here by each flow pattern.  
 

Table 2: Training Data Confusion Matrix: Test 1 
 

 
 A  B  DB   I  SS  SW  Error     Rate  

A  617  0  0  4  0  0         0.0064412          4/621  
B  0  76  0  0  0  0         0.0                       0/76   
DB  0  0  331  34  0  0         0.0931507      34/365                   
I  42  46  60  1629  0  6         0.0863713       154/1783  
SS  0  0  0  56  14  10       0.825                 66/180 
SW  114  0  1  43  5  330     0.3306288       163/493 

 773  122  392  1766  19  346     0.1231714       421/3418  
 



RESULTS 

 
The testing set is used to predict the variable Flow Pattern, which contains labels for 
each class (A, B, DB, I, SS, and SW), and a predictive accuracy of 83.87% for the 
different classes is obtained, the details of which are shown in Table 3.  
 
 

Table 3: Confusion matrix for the cross-validation data set Test 1  
 

 
 A  B  DB   I  SS  SW        Error     Rate  

A  581  0  3  20  0  17      0.0644122         40/621  
B  0  51  0  25  0  0        0.3289474         25/76   
DB  2  0  310  50  0  3        0.1506849     55/365                   
I  78  29  65  1474  67  70      0.1733034       309/1783  
SS  0  0  0  5  67  8        0.1625               13/80 
SW  94  0  2  23  26  348    0.2941176        145/493 

 755  80  380  1597  160  446    0.1717379        587/3418  
 



RESULTS 

 
Table 4 shows the confusion matrix on train data for Test 2, predicting classes A, B, 
DB, I and ST. Similar to Test 1 we can see the strong diagonal components, and the 
classifier has small classification error. The testing set is used to predict the variable 
Flow Pattern, which contains labels for each class (A, B, DB, I, and ST), and we 
achieve a predictive accuracy of 83.34%. The details are shown in Table 5.  
 

Table 4: Training Data Confusion Matrix: Test 2 
 

 
 A  B  DB   I  ST  Error           Rate  

A  605  0  0  6  10  0.0257649        16/621  
B  0  76  0  0  0  0.0            0/76   
DB  0  0  350  14  1  0.2                   15/365                   
I  69  40  109  1433  132  0.1962984     350/1783  
ST  93  0  1  1  478  0.1657941       95/573 

 767  116  460  1454  621  0.1392627      476/3418  
 



RESULTS 

 
 

Table 5: Confusion matrix for the cross-validation data set Test 2  
 

 
 A  B  DB   I  ST  Error            Rate  

A  574  0  2  21  24  0.0756844       47/621  
B  0  35  1  40  0  0.5394747       41/76   
DB  0  0  309  53  3  0.1534247       56/365                   
I  82  15  94  1436  156  0.1946158     347/1783  
ST  98  0  4  28  443  0.2268761      130/573 

 754  50  410  1578  626  0.1816852      621/3418  
 



RESULTS 

 
Table 6 shows the confusion matrix for the training data set for Test 3, predicting the 
classes Intermittent, Dispersed, and Segregate. We can readily see the strong diagonal 
components with the classifier achieving little classification error. The testing set is 
used to predict the variable flow pattern, which contains labels for each class 
(Intermittent, Dispersed, and Segregate) with a predictive accuracy of 85.97%, the 
details of which are shown in Table 7  
 

Table 6: Training Data Confusion Matrix: Test 3 
 

          Intermittent  Dispersed     Segregate                Error                 Rate         
Intermittent  1419         63              301               0.2041503          364/1783  
Dispersed  64        295                6                0.1917808           70/365   
Segregate  85         2              1183             0.0685039           87/1270                    

                 1490       420              1508             0.1524283         521/3418  
 
 

Table 7: Confusion matrix for the cross-validation data set Test 3  
 

          Intermittent  Dispersed     Segregate               Error                  Rate         
Intermittent  1469         70              224              0.1761077          314/1783  
Dispersed   14        350                1                0.0410959           15/365   
Segregate   7         0              1263             0.00055118          7/1270                    

  1490       420              1508             0.09833031       336/3418  



RESULTS 

Discussion  
 
•  A comparison between the predicted flow pattern and the experimental database 

considering the three data sets under study show low error and high classification 
accuracy.  

•  Results for Test 1 and Test 2 are very similar. Most of the failed predictions between 
the flow patterns can be attributed to the different criteria used by the different 
experimentalists to classify the flow patterns and their relationships.  

•  Finally an improvement is obtained for Test 3 by combining the segregated flow 
patterns (ST + A) and the dispersed flow patterns (DB + B). The prediction accuracy 
for this case increases to 85.97%. This is improvement is due to the clear and 
straightforward distinction between the two combined flow patterns [Shoham].  

•  The results for the deep learning approach for classification of two-phase flow 
pattern are encouraging.  



CONCLUSIONS 

 
•  In this paper we proposed three types of data sets as input features and 

investigated the use of deep learning for the classification and prediction of two-
phase flow, based on experimental data  

•  We proposed six types of input features, and a corresponding architecture to 
precisely predict flow patterns. First, we showed that the network can learn 
surprisingly well as using our chosen architecture and parameters allowed us to 
achieve high classification accuracy. Second, we showed that the network can 
classify the different flow patterns with high efficiency. Finally, we achieved high 
precision predicting different combinations of classes.  

•  Our experiments indicate that a deep learning approach, has the potential to 
capture flow patterns, which may boost the classification performance. These 
investigations could be further improved in future studies by carrying out more 
exhaustive searches for the parameters in the architectures. The result would be 
improved overall performance of these systems.  

•  Finally, deep learning can be used to predict flow patterns using pipe 
characteristics, fluid properties and superficial velocities of the two-phase flows. It 
outperforms results from previous studies  


